Strong Convergence Rates for Backward Euler on a Class of Nonlinear Jump-Diffusion Problems∗
نویسندگان
چکیده
We generalise the current theory of optimal strong convergence rates for implicit Euler-based methods by allowing for Poisson-driven jumps in a stochastic differential equation (SDE). More precisely, we show that under one-sided Lipschitz and polynomial growth conditions on the drift coefficient and global Lipschitz conditions on the diffusion and jump coefficients, three variants of backward Euler converge with strong order of one half. The analysis exploits a relation between the backward and explicit Euler methods.
منابع مشابه
Numerical methods for nonlinear stochastic differential equations with jumps
We present and analyse two implicit methods for Ito stochastic differential equations (SDEs) with Poisson-driven jumps. The first method, SSBE, is a split-step extension of the backward Euler method. The second method, CSSBE, arises from the introduction of a compensated, martingale, form of the Poisson process. We show that both methods are amenable to rigorous analysis when a one-sided Lipsch...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملConvergence rates of the truncated Euler-Maruyama method for stochastic differential equations
Influenced by Higham, Mao and Stuart [9], several numerical methods have been developed to study the strong convergence of the numerical solutions to stochastic differential equations (SDEs) under the local Lipschitz condition. These numerical methods include the tamed Euler–Maruyama (EM) method, the tamed Milstein method, the stopped EM, the backward EM, the backward forward EM, etc. Recently,...
متن کاملDiscrete-time approximation of BSDEs and probabilistic schemes for fully nonlinear PDEs
The aim of this paper is to provide a survey on recent advances on probabilistic numerical methods for nonlinear PDEs, which serve as an alternative to classical deterministic schemes and allow to handle a large class of multidimensional nonlinear problems. These probabilistic schemes are based on the stochastic representation of semilinear PDEs by means of backward SDEs, which can be viewed as...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کامل